Statistical Parametric Mapping of Functional MRI data Using Spectral Graph Wavelets
نویسندگان
چکیده
In typical statistical parametric mapping (SPM) of fMRI data, the functional data are pre-smoothed using a Gaussian kernel to reduce noise at the cost of losing spatial specificity. Wavelet approaches have been incorporated in such analysis by enabling an efficient representation of the underlying brain activity through spatial transformation of the original, un-smoothed data; a successful framework is the wavelet-based statistical parametric mapping (WSPM) which enables integrated wavelet processing and spatial statistical testing. However, in using the conventional wavelets, the functional data are considered to lie on a regular Euclidean space, which is far from reality, since the underlying signal lies within the complex, non rectangular domain of the cerebral cortex. Thus, using wavelets that function on more complex domains such as a graph holds promise. The aim of the current project has been to integrate a recently developed spectral graph wavelet transform as an advanced transformation for fMRI brain data into the WSPM framework. We introduce the design of suitable weighted and un-weighted graphs which are defined based on the convoluted structure of the cerebral cortex. An optimal design of spatially localized spectral graph wavelet frames suitable for the designed large scale graphs is introduced. We have evaluated the proposed graph approach for fMRI analysis on both simulated as well as real data. The results show a superior performance in detecting fine structured, spatially localized activation maps compared to the use of conventional wavelets, as well as normal SPM. The approach is implemented in an SPM compatible manner, and is included as an extension to the WSPM toolbox for SPM.
منابع مشابه
Anatomically-adapted graph wavelets for improved group-level fMRI activation mapping
A graph based framework for fMRI brain activation mapping is presented. The approach exploits the spectral graph wavelet transform (SGWT) for the purpose of defining an advanced multi-resolutional spatial transformation for fMRI data. The framework extends wavelet based SPM (WSPM), which is an alternative to the conventional approach of statistical parametric mapping (SPM), and is developed spe...
متن کاملWavelet-Based Statistical Analysis in Functional Neuroimaging
Wavelet-based analysis versus Gaussian smoothing in statistical parametric mapping (SPM) for detecting and analyzing brain activity from functional magnetic resonance imaging (fMRI) data is presented. Detection of activation in fMRI data can be performed in the wavelet domain by a coefficient-wise statistical t-test. The link between the wavelet analysis and SPM is based on two observations: (i...
متن کاملMapping spatial variability of soil salinity in a coastal area located in an arid environment using geostatistical and correlation methods based on the satellite data
Saline lakes can increase the soil and water salinity of the coastal areas. The main aim of this study is to distinguish the characteristics of the spectral reflectance of saline soil, analyze the statistical relationship between soil EC and characteristics of the spectral reflectance of saline soil, and to map soil salinity east of the Maharloo Lake. The correlation between field measurements ...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملSpectral clustering applied for dynamic contrast-enhanced MR analysis of time-intensity curves
Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) represents an emerging method for the prediction of biomarker responses in cancer. However, DCE images remain difficult to analyze and interpret. Although pharmacokinetic approaches, which involve multi-step processes, can provide a general framework for the interpretation of these data, they are still too complex for robust and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012